
A Fast, Efficient, and Strongly-Consistent Object Store
Shuwen Sun

Northeastern University
Boston, Massachusetts, USA
sun.shuw@northeastern.edu

Isaac Khor
Northeastern University

Boston, Massachusetts, USA
khor.i@northeastern.edu

Ji-Yong Shin
Northeastern University

Boston, Massachusetts, USA
j.shin@northeastern.edu

Peter Desnoyers
Northeastern University

Boston, Massachusetts, USA
pjd@ccs.neu.edu

Abstract
S3-compatible object storage has become ubiquitous, used by an
ever-expanding range of applications. Workload traces show that
many of these applications treat object storage like a traditional
file system, with many small reads and writes, yet object storage
implementations have not kept up. Optimized for bulk storage,
these systems cannot efficiently exploit modern SSDs, requiring
large hardware installations to achieve operation rates typical of
local file systems on modest machines.

ZStore is a highly-efficient object store designed for modern
hardware, providing strong consistency (per-key linearizability) via
a novel architecture which replicates data over independent per-
device shared logs, using NVMe-over-Fabrics as its backend storage
protocol. Based on a 3-node symmetric active-active cell, ZStore
performs small reads and writes with minimal I/O amplification
(beyond replication factor) while supporting object sizes up to the
S3 maximum of 5 TB and optional erasure coding for objects larger
than 128KB. ZStore guarantees single-key linearizability using a
two-phase coordination mechanism, tracking in-flight writes so
that reads of stable data can be handled on a single gateway, with
a heavier-weight multi-node read protocol used only when inter-
fering writes are detected. Our evaluation shows ZStore achieving
nearly an order of magnitude improvement in IOPS over widely-
used systems (MinIO and Ceph) when evaluated on comparable
hardware.

CCS Concepts
• Information systems → Distributed storage; • Computer
systems organization→ Distributed architectures.

1 Introduction
S3-like object storage has become the file system of the data center
and cloud, used by a majority of surveyed cloud applications [56]
to persist any data an application writer needs to store. Like files

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’25, November 19–21, 2025, Online, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2276-9/25/11
https://doi.org/10.1145/3772052.3772272

used by a single system, object store data comes in a wide variety
of types and sizes; e.g., IBM’s 2020 measurements [34] show a
median/mean/max object size of 11 KB, 2.6MB, and 249GB over
a set of 98 week-long traces, with applications varying widely in
object size distribution, operation rate, and read/write ratio.

While file systems have evolved over decades in the face of
application demands to handle both high-throughput large file
workloads and high-operation-rate small file ones, object storage
systems have not for the most part. As an example, a recent bench-
mark [5] of the Ceph object store (Rados Gateway [63] or RGW)
measured peak rates for writing and reading 4 KB objects of 178 K
and 312 K IOPS respectively. These are roughly similar to results we
see on a single-system small file create/read benchmark on Linux
ext4, yielding 181K and 210K (uncached1) operations per second
respectively. Yet while the ext4 benchmark achieved these results
on a 6-core machine and a consumer-grade Non-Volatile Memory
express [4] (NVMe) drive, the Ceph results required a 640-core
cluster with 60 enterprise-class drives, at a capital cost potentially
100× or 200× higher than the single-machine filesystem.

Then, what are the requirements of a modern object store and
why build one instead of focusing on a different storage abstraction?
In theory an object store is equivalent to a simple key-value store,
and again in theory is simple to implement over abstractions such
as distributed shared logs [48]—both topics of extensive recent
research2—yet in practice an object store is neither KV store nor
shared log, with a set of unique requirements:

• large object support: up to 5 TB [2], with support for efficient
storage (e.g., erasure coding) of large objects; very small objects
(≪ 4KB) must be supported, but sub-block packing is not
needed due to the large mean object size.

• extreme scalability: unlike KV stores and shared logs, which
are often deployed as per-tenant or per-application instances,
object stores are typically datacenter-wide resources and must
scale accordingly;

• simple operations: S3-compatible stores support PUT, GET
(with optional byte range), DELETE, and list object (name) op-
erations, with per-request authorization; more complex opera-
tions like range requests are not supported by the API.

• simple consistency: object stores available today offer list-
after-write and per-key read-after-write consistency [10],

1Cached reads were roughly 10× faster.
2Over a dozen KV store-related papers have been published in the last 5 years of FAST
alone [29–32, 42, 44, 45, 50, 55, 58, 65–69, 71], while object storage is rarely mentioned
in the literature [26].

1

https://orcid.org/0003-2028-033X
https://orcid.org/1234-5678-1234
https://orcid.org/1234-5678-1234
https://orcid.org/1234-5678-1234
https://doi.org/10.1145/3772052.3772272


Client

Gateway

SSD

Load balancer

Cell
1

2

3

Figure 1: ZStore architecture. Requests are sharded across 3-
gateway cells (➀) and load-balanced within cells (➁); gateways
translate PUT and GET requests into NVMe operations to pool of
remote devices (➂).

rather than cross-key consistency or a total ordering of all
operations.

To address these requirements, we present ZStore, an object store
designed to provide local filesystem-like performance at datacenter
scale. ZStore offers:

• single-key linearizability and list-after-write consistency,
• a novel architecture based on per-device (i.e., independent,
unreplicated) shared logs,

• high efficiency, translating small PUTs into 3+ 𝜖 NVMe writes,
and small GETs to 1 NVMe read, or 2 in its low-memory con-
figuration,

• a highly scalable design based on sharding across 3-gateway
cells with symmetric active-active redundancy,

• flexible storage layout: small objects are triple-replicated, while
medium and large objects can be erasure coded or stored in
non-flash pools.

The ZStore architecture is based on a 3-gateway load-balanced
cell, seen in Figure 1. HTTP object requests are translated by gate-
ways into read and append operations to backend storage devices,
with semantics designed for NVMe-over-fabrics (NVMe-oF) [39]
and the Zoned NameSpace (ZNS) Zone Append command3[3, 25].
An Remote Direct Memory Access (RDMA)-based protocol is used
to track in-flight write operations, allowing zero-overhead reads of
stable objects from any gateway while ensuring consistent access to
keys which are being actively modified; in our analysis of published
traces [34], fewer than one in 105 read operations require this addi-
tional processing. A standard coordination service, ZooKeeper [37],
is used to schedule cell-wide operations such as batched metadata
persistence, garbage collection, and failure recovery.

ZStore maintains a full in-memory index for all keys, which
we argue is cost-effective for mean object sizes of 16 KB and up;
we describe a variant requiring minimal RAM at the cost of an
additional 1 + 𝜖 NVMe reads per small GET operation.

Our prototype using Boost async I/O [17] and SPDK [7] achieves
speeds of 190K small PUTs and 424K small GET operations per
second on a single 16-core gateway with a backend of 6 WD DC

3Using either native ZNS devices or emulation over conventional devices.

ZN540 ZNS NVMe devices, and higher speeds with multiple gate-
ways. Especially, with small objects, ZStore achieves an order of
magnitude higher performance than MinIO and Ceph.

The contributions of this paper are:

• ZStore, an object store based on replication across a shared
pool of unreplicated append-only shared logs,

• a mechanism to track in-flight writes, allowing reads of inactive
data to be forwarded to backend storage without involvement
of other gateways, while ensuring linearizability in contended
cases, and

• a prototype implementation with a full real-world service (S3
object store) and detailed evaluation, demonstrating perfor-
mance better or comparable to the Ceph benchmark described
above when running on a single 16-core server with six back-
end devices.

In the remainder of this paper we describe S3 object storage,
NVMe-oF, and ZNS in more detail (§ 2), present the architecture
and design of ZStore (§ 3) and the implementation of our prototype
(§ 4), evaluate its performance in isolation and in comparison with
Ceph [61] and MinIO [19] (§ 5), and survey related work (§ 6).

2 Background and Motivation
Before describing ZStore, we provide (a) details of the S3 object
storage interface, (b) analysis of a corpus of object storage traces, for
better understanding of potential workloads, and (c) an overview
of the NVMe technologies used by ZStore.

2.1 S3 Object Storage
Simple Storage Service or S3 [9] was introduced by Amazon Web
Services in 2006 [1]; since then it has become a foundation of of
cloud applications [56] and been adopted by other providers [11, 14,
15, 18] and open-source systems [19, 22, 63]. It is an HTTP-based
storage API for unstructured named objects of up to 5 TB identified
by URL (bucket + key), supporting single-object PUT, ranged GET,
and DELETE operations, and a list objects command to enumerate
keys, along with fine-grained access control based on per-request
authentication.

The original S3 was eventually consistent, with a risk of stale data
fromGET and list objects operations. Modern versions offer list-after
write and read-after-write guarantees on a single key, beginning
with AWS [10, 36]; this consistency level is now supported by most
other providers (e.g., Microsoft Azure [28]) and implementations
(e.g., Ceph [61] and MinIO [19]).

2.2 Workload Analysis
To better understand a typical object store workload, we exam-
ine the IBM Cloud Object Store corpus [34], encompassing 535M
operations collected from 99 tenants over 7 days. As shown in Fig-
ure 2, the aggregate workload is read-dominated, however this
varies widely by trace, with many traces being write-dominated.
We highlight some additional characteristics relevant to our design.
Small operations: Median reads and writes are quite small, at
8.3 KB and 13.6 KB, with mean values hundreds of times larger,
however Figure 2a shows that a third of traces have mean read and
write sizes of 100 KB or less.

2



100 102 104 106

Object size [bytes]

0.0

0.5

1.0

Fr
ac

tio
n

of
tr

ac
es

read mean
read median

write mean
write median

(a) Request size CDF. CDF by trace of per-trace mean, median request
sizes. Small operations are common, and dominate some traces

0 250 500 750 1000
Delay in milliseconds

0.000

0.005

0.010

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

write-after-write
read-after-write

(b) Truncated CDF of read-after-write, write-after-write intervals.
Interval from PUT to first GET or next PUT of the same key. Very few
PUTs (< 1.4%) and GETs (< 0.6%) are within 1000ms of a previous PUT.

Figure 2: IBM Cloud Object Store trace [34] (535M operations, 2099TB transferred)

Few deletes or overwrites: Roughly half of examined traces do
not delete or overwrite more than a negligible fraction of objects
written, while most other traces delete objects before writing the
same key, rather than overwriting: of 117M total writes in the trace,
67M (57%) are later deleted, while only 3.8M (3.2%) are overwritten.
We note, however, that one or two traces exhibit very high overwrite
ratios.
Little read-after-write andwrite-after-write conflict: Figure 2b
shows truncated CDFs of read-after-write and write-after-write
delays, ignoring all delays greater than 1 second. The fraction of
reads following writes by less than 50ms is negligible; in fact only
one trace shows a non-zero fraction (0.004%) of RW delays less than
10ms.

We take advantage of these characteristics in the ZStore archi-
tecture, using fast-path operations for “stable” objects which have
not been recently modified, and a slow path to ensure consistency
otherwise. By reducing this window to a small number of millisec-
onds or less, these slow-path operations have negligible effect on
mean or even tail latencies for realistic workloads.

We note that this behavior is significantly different than what is
observed in specialized shared-log applications. While read-after-
write intervals in most IBM cloud object storage traces are in the
range of hours, the common log-following pattern for shared log
use, as described in LazyLog [48], results in typical read-after-write
intervals of seconds or less.

2.3 NVMe-oF and ZNS
ZStore is designed for efficient operation using remote access to
NVMe storage devices. While the original NVMe protocol was PCIe-
based, the NVMe-oF [20] extensions allow the NVMe protocol to
be used across both TCP (NVMe/TCP) and RDMA (NVMe/RDMA)
transports, allowing access to network-remote devices with little
overhead, yielding performance close to that of PCIe-connected
ones [51]. While NVMe-oF is not directly supported by SSDs on
the market today, they can be used in tandem with host-based
NVMe-oF implementations such as SPDK (the Storage Performance
Development Kit [7]), dedicated NVMe-oF enclosures [16], or even
smart NIC implementations [13]. The ZStore prototype uses SPDK

target mode emulation, which includes NVMe multipath features
allowing shared access to a device from multiple remote hosts.

In ZStore, each device is treated as a shared append-only log,
using the ZNS [21] NVMe command set. ZNS is designed to allow
most flash translation layer (FTL) functionality to be moved to
the host; the LBA space is divided into large zones which must be
written sequentially, and then reset (i.e., erased) before they may
be rewritten. Since NVMe does not guarantee operation ordering
across (or even within) submission queues, ZNS includes a zone
append command [25] to avoid the need for synchronous writes.

When using zone append, the device itself is responsible for
sequencing simultaneous writes. Operations are addressed to a
zone, rather than a specific block address, and data is written to
the current write pointer for that zone. The address at which data
was written is returned in the response, and the write pointer
incremented by the write size. When combined with NVMe-oF
multipath, this allows multiple ZStore gateways to append to a
single unreplicated shared log (i.e., device) without need of an
external sequencer.

3 Architecture and Design
ZStore is a distributed object store based on 3-gateway load-
balanced active-active redundant cells which write directly to mul-
tiple independent logs on remote storage devices. PUT requests
prepend metadata to generate log records which are triply repli-
cated across independent logs using atomic append operations; all
other writes to storage are batched and amortized across multi-
ple PUTs. Small GETs translate to single NVMe read operations,
ensuring efficient data retrieval.

Per-key write sequencing4 is determined by primary-replica or-
der, rather than using a shared sequencer as in CORFU [24] ; we
describe mechanisms to ensure this order is preserved even in cases
of primary replica failure. Linearizability of operations on a single
key is ensured by RDMA replication of metadata across cell mem-
bers via a two-phase communication protocol; at high operation
rates this replication is batched for efficiency, with only modest

4ZStore does not guarantee a total ordering of operations on different keys.

3



in memory

Header
LBA1,len

Data
(lba1)

Header
LBA2,len

Chunk 
List
(lba2)

LBA3,len
LBA4,len

Data
(lba3)

Data
(lba4)

on SSD

Gateway mapObject 
key

log direction

Figure 3: Objects smaller than MDTS (128KB) minus log
header are written directly to the device as a data block fol-
lowing the header. Larger objects are written to the log in
multiple chunks, with a final header entry to track them.

increases in write latency. Index persistence, garbage collection, re-
balancing and failure recovery are performed by electing individual
cluster members using a standard coordination service 5.

3.1 High-level Architecture
The ZStore architecture is based on a 3-gateway cell, shown pre-
viously in Figure 1, sharing a storage pool of devices managed as
independent, unreplicated append-only logs. Consistent hashing is
used to choose a replica set when writing, ensuring that ordering of
writes to a single key can be determined from the log. Log ordering
is based on the block number at which a replica is written, which is
preserved in the ZStore index in order to route read operations, thus
two index entries for versions of the same object will inherently
determine their ordering.

Once write ordering has been determined, the location (i.e., de-
vice and block address) of each replica is stored both in memory and
persistently. Since the consistent hash is not used for data retrieval,
it may be readily updated to add or remove devices. Each device
functions as an append-only log, with append operations returning
the address at which data is written; in particular ZStore gateways
connect to shared devices using NVMe-oF (TCP or RDMA), and
append via ZNS zone append command.

Most ZStore operations use a cryptographic hash of the key
(actually bucket+key), rather than the key itself; the short deter-
ministic size of key hashes simplifies the process of distributing
metadata when writing, and bounds memory consumption for the
in-memory index. Wemaintain this in-memory index (referred to as
the ZStore map) of all objects on each gateway in a cell, periodically
persisting new entries to replicated storage. To satisfy bucket list
requests we maintain a full key list, storing only recent entries in
memory.

As seen in Figure 3, small objects are written in single append
operations to the three targets with a log header specifying full
bucket+key, length, and other metadata such as owner and permis-
sions. The size of these append operations is limited by the NVMe
maximum data transfer size or MDTS, typically 32 4KiB blocks.
Larger objects are broken into chunks which are written, optionally

5Our prototype uses ZooKeeper [37]

with erasure coding rather than triple replication, followed by a
single inode-like triple-replicated object descriptor ; the ordering of
the write is determined by the log location of this descriptor.

Read and write requests are load-balanced uniformly across gate-
ways in a cell; further scaling of ZStore is performed by sharding
keys and buckets across multiple cells at the load balancer level.
Storage devices may be managed in separate per-cell pools, or may
be shared across multiple cells.

To describe the architecture in more detail, we describe (1) write
and read handling, including the ZStore consistency protocol, (2) list
object requests, (3) coordinated metadata persistence, (4) bucket list
operations, (5) garbage collection, (6) failure recovery, and finally
(7) potential design variations.

3.2 Write and read handling
Writes are replicated across three independent logs, with one dis-
tinguished as the primary replica. The devices themselves are used
to sequence writes; the replica set is determined by a consistent
hash on the key, guaranteeing that all writes to a single object go to
the same replica set, and the order of writes on the primary replica
(as in CORFU [24]) defines a total order on writes to that key. As is
the case with other object stores, we do not guarantee ordering of
or consistency for PUT and GET operations across multiple keys.

Individual writes are identified by (a) writer gateway and per-
gateway write sequence number, (b) epoch number, and (c) a lo-
cation triple, specifying the length (in 4 KB blocks) and the device
ID and logical block address (LBA) of each replica of the object or
object descriptor. DELETE writes a tombstone to the log, and is
handled almost the same as a write.

Given two index entries for writes to the same object in the
current epoch, their order can be distinguished by their location
tuples: a higher LBA on the primary replica (first in tuple) indicates
a more recent write. The global epoch number for new writes is
incremented each time map entries are persisted, and duplicate
entries removed, thus (with one exception noted below) indexes
with a more recent epoch number always take precedence over
those from previous epochs.

The writer uses an RDMA-based two-phase protocol to broadcast
write metadata to the other two cell gateways, ensuring single-key
linearizability; the full sequence of steps in response to a client
PUT is as follows, abbreviating phase 1 and 2 as 𝜙1 and 𝜙2, as seen
in Figure 4:

(1) 𝜙1 notification: (gwID, seq#, key hash) (➀ in Figure 4a)
(2) dispatch append operations to 3 devices (➁ in Figure 4a)
(3) receive append completions (including LBAs) (➂ in Figure 4a)
(4) acknowledge write to client (➃ in Figure 4b)
(5) 𝜙2 notification: (gwID, seq#, key hash, location triple) (➄ in Fig-

ure 4b)

Steps (1) and (2) may be performed in any order, or in paral-
lel, but the client acknowledgment must wait until (i) the other
two gateways have received the 𝜙1 notification, and (ii) device
operations have completed (step (3)). Note that step (1) requires
an acknowledged write, i.e., the notification is guaranteed to be in
memory on both remote gateways before client acknowledgment
in step (4).

4



Gateway1

Client

Target

Key Metadata

b a
b

a Data

2

3

Map
a

Gateway2
Inflight
b

b1

Map

(a) PUT phase 1. Writing gateway (Gateway 1) receives the PUT request
from client, creates an entry in the gateway map, broadcasts object key to
other gateways (➀) and issues appends to devices (➁). Once all appends
complete, it updates the entry with location information (➂).

Map

Client

a

Gateway1

Map
a

Gateway2
Inflight

b

b b5b

Key Metadataa Data

4 ACK

(b) PUT phase 2. The writing gateway acknowledges the writes to the
clients (➃). Writing gateway then broadcasts the ongoing writes to other
gateways, where the corresponding gateway will delete the current object
key in the in-flight map, and create a map entry in its gateway map (➄).

Figure 4: ZStore two-phase coordination protocol

Each gatewaymaintains an in-flight map holding𝜙1 notifications
received from the other two gateways. On receiving a GET request,
a gateway first checks the in-flight map; if no entry is found, we
can use the current entry in the gateway map to dispatch a read
operation and complete the request. If one or more entries for the
key are found in the in-flight map, a request is sent to the gateway(s)
the entry was received from; on receiving this request we (a) wait
until 𝜙1 notifications have been pushed to all other gateways, and
(b) respond with the most recent map entry for that object. Finally,
when a𝜙2 notification is received, the corresponding𝜙1 notification
is removed from the in-flight map, and if newer (based on primary-
replica position) than the current gateway map entry, the gateway
map is updated.

Read-after-write consistency is ensured by notifying other gate-
ways of a write (𝜙1 notification) before acknowledging to the client,
ensuring that any read received at any gateway after write ac-
knowledgment will see that write. In the period before the write is
acknowledged to the client (step (4)) it is possible that gateway A
has received the 𝜙1 notification while gateway B has not; if a read
to A is followed by a read to B, it may be possible to see reads “go
backwards in time”. Steps (a) and (b) above prevent this, ensuring
monotonic reads: before returning version𝑉 of an object, we ensure
that 𝜙1(𝑉 ) has been delivered to all gateways.

RDMA-based queues are used for notifications; reads check the
head of the two 𝜙1 queues to determine if any notifications must
be ingested before checking the in-flight map. Notifications are
batched, with a short timeout, limiting the aggregate rate of RDMA
operations to at most 100-200K per second; at this rate batching de-
lay is lower than device write latency, and thus does not contribute
to latency of PUT operations.

The “in-flight window” during which slow-path read operations
are required is bounded by the latency of device writes and (batched)
𝜙1 and 𝜙2 notifications, i.e.,≪ 1ms for reasonable hardware config-
urations. This latency-bounded window is much shorter than that
of LazyLog [48], where the window duration is bounded by periodic
activity requiring coordination of nodes. We note that there are
fewer than 6000 sub-10ms read-after-write delays among the 418M
reads in the IBM traces, although the fraction might be higher if
the same applications were run against a very-low-latency object
store.

3.3 List Objects handling
S3 [6] does not have a range request or “next” mechanism, but
provides the ListObjects and ListObjectsV2 APIs, which enumerate
up to 1000 keys in lexicographic order, optionally starting after a
specified value; this returns the key, size, checksum, owner and
timestamp for each key. Object stores are expected to provide list-
after-write consistency [36]—a ListObjects request received after
a write completes will include information from that (or a newer)
write. Application expectations for performance of this operation
are rather low, with performance on AWS typically in the 10s of
thousands of keys listed per second, allowing the use of simple
mechanisms.

Each ZStore gateway in the cell maintains a sorted list of key
names written in the current epoch, along with metadata described
above and the ZStore per-gateway write sequence number. Gate-
ways can request a sub-range or the full set of in-memory key names
from each of the other two gateways. Keys written in prior epochs
are persisted in storage, in an LSM tree-like series of sorted files.
Fulfilling a list objects request requires requesting in-memory keys
from other gateways, then merging them with the corresponding
range from multiple level files in storage.

3.4 Metadata persistence
Like most log-structured systems, ZStore is able to recover fully
from the data records in storage, but periodically aggregates its
in-memory index and checkpoints it to persistent storage in order
to bound this recovery process. This process is coordinated via
Zookeeper [37], with each checkpoint and the period preceding it
comprising a numbered epoch. We use a fuzzy checkpoint process
with the following properties:

• Each write belongs to an epoch, and almost all index entries
for epoch 𝐸 are persisted in checkpoint 𝐸

• Stale indexes are tolerated, e.g., a write at the beginning of
epoch 𝐸 + 1 may be superseded by a write at the end of epoch
𝐸, persisted in checkpoint 𝐸.

• No writes will be missed in log recovery.
• Failure of the checkpoint process can be recovered from with-
out loss of data.

5



ZStore maintains write information (i.e., key to location map-
pings) independently on each gateway, and periodically persists a
searchable index checkpoint to flash. In this process we want to
ensure that:

• after completion of a checkpoint, all writes to that point are
either (a) recorded in the most recent or a previous checkpoint,
or (b) resident in memory and guaranteed to be recorded in
the next checkpoint;

• log recovery, under a failure scenario, will start at a point
early enough to include all updates not included in the newest
checkpoint, and preferably not long before that;

• checkpointing is safe against gateway or target failure

In normal operation a gateway maintains two in-memory maps
from key to location: one map reflects all writes in epochs up
through the previous one (𝐸 − 1), and a smaller map holds writes
in the current epoch 𝐸, being updated from local writes and 𝜙2
notifications. Reads check the current epoch map first, then the
full map. We note that the order in which writes are added to the
map may not reflect the actual (i.e., primary-replica) write order;
we therefore compare any new write information with the existing
index, and discard stale updates. In particular, a new entry is older
than an existing one, and will be discarded, if either (1) its epoch
number is less than the existing one by 2 or more, or (2) its primary
replica location is earlier in the log.

The checkpoint process is as follows:

(1) Using the coordination service, one node elects itself as the
checkpoint leader, and announces the transition to epoch 𝐸 + 1.

(2) The other gateways increment the current epoch to 𝐸 + 1 and
ack; all new writes will be tagged 𝐸 + 1.

(3) The checkpoint leader pulls all entries for epoch 𝐸 (and earlier,
if any) from its current-epoch map, writes them to storage, and
then merges them into the full map.

(4) The other gateways are notified that the checkpoint is complete;
they remove entries with epoch ≤ 𝐸 from the current-epoch
map and merge them into the full map.

This creates a series of files (actually replicated block extents)
holding checkpoint information, like an LSM tree but without an-
cillary lookup structures; we use Zookeeper to track the location of
these files. Additional information stored in the checkpoint includes
the key list, described above, and the epoch start vector: for each
device, the lowest LBA holding data from this epoch, which may
be calculated from the index entries persisted in the checkpoint.

We call the checkpoints “fuzzy” because the checkpoint leader
may miss a few straggler 𝜙2 notifications from one of the other two
gateways when persisting its map. We assume the delay of these
stragglers is much less than a checkpoint period; for recovery we
create our full map from the most recent checkpoint, then begin log
recovery from the epoch start vector, guaranteeing that no writes
are missed.

If the checkpoint leader fails before completion, another gate-
way will time out and elect itself to replace it. This increments
the current epoch to 𝐸 + 2, and we continue as described above;
the failed gateway is not allowed to rejoin until the checkpoint
is complete. To periodically compact the checkpoints, a gateway

elects itself compaction leader, merges several older checkpoint files
in LSM fashion into a new file, and updates the checkpoint file
list in Zookeeper. Checkpointing and compaction are exclusive; an
attempt to perform one will wait until the other has completed.

3.5 Garbage collection.
In the ZNS version of ZStore, data is appended to zones of roughly
1GB on each device (assuming a large-zone ZNS); as storage fills,
zones holding out-dated data (i.e., garbage) must be cleaned and
erased before being re-used. Again, we use Zookeeper to elect a
GC leader, which performs one or more garbage collection cycles
before stepping down. A zone is selected for cleaning using the
Greedy criteria (i.e., with least live data), and remaining live data is
copied to other devices. This will update one entry in the object’s
location triple; a 𝜙2 notification for this new location set is sent to
all gateways, and applied to the current-epoch map.

Handling of new writes while garbage collecting is a challenge in
many systems, but is readily handled by ZStore’s map update rules.
Moving data for a specific object version changes its location tuple,
but not its epoch, so as long as the zone being cleaned contains only
data from epochs 𝐸 − 2 and earlier, index updates due to garbage
collection will be properly superseded by new writes in the current
epoch. When all data has been copied out of a zone and all resulting
𝜙2 notifications have been posted, it is safe to reset (i.e., erase) the
zone and add it to a free zone list in Zookeeper.

Garbage collection can proceed during checkpointing or com-
paction, as the 𝜙2 notifications it generates will be checked against
existing map entries. GC can ignore the key-to-replica set hash and
choose arbitrary targets for data, as the object version’s write order
is already specified by epoch number.

3.6 Failure Recovery
ZStore is able to recover from target failure, gateway failure, and
combined gateway+target failure.
Target failure: If a target fails, the gateways have full knowledge
of what data was stored on the device. When a gateway deter-
mines (e.g., through command timeout) that a target is dead, it uses
Zookeeper to advertise this and to elect itself failure recovery leader
for that target. It first creates a new consistent hash map without
the failed device, and broadcasts that to the other gateways as part
of a checkpoint and epoch change.

It then proceeds to recover all data stored on that device by
(1) reading from another replica (or equivalent recovery of larger
erasure-coded objects), (2) writing a copy somewhere else, and (3)
broadcasting a 𝜙2 notification with an updated location triple. As
with garbage collection, locations may be chosen without regard to
the consistent hash, and the rules for updating the current-epoch
map when receiving 𝜙2 notifications ensure that new writes to an
object will take precedence over a recovered version.
Gateway failure: When handling a write, a gateway (1) sends
𝜙1 notifications to other gateways, (2) writes to the backend, (3)
acknowledges to the client, and (4) sends 𝜙2 notifications to other
gateways. If the gateway fails before step (3), the write did not
complete and can be abandoned. If it fails after step 4, the other
gateways have a record for that write which will be persisted in the

6



next checkpoint, but writes which were in an intermediate stage
may have been acknowledged, and must be recovered from the log.

To do this, one gateway uses Zookeeper to declare the failed
gateway as dead and elect itself as recovery leader, and traverses
the log on each device from the starting point identified in the most
recent checkpoint. The recovery leader sends 𝜙2 notifications for
each log entry it finds which was written by the failed gateway,
which if current will be added to each gateway map and persisted
in the next checkpoint. Once recovery is complete, a checkpoint is
performed before allowing the dead gateway to rejoin the cell.
Target+Gateway failure: The final case is simultaneous (i.e., over-
lapping) target and gateway failure. In this case the primary replica
may not be available, preventing its use in determining ordering
for writes in progress. This is only an issue when writes closely
follow each other; we detect this case via the in-flight map of 𝜙1
notifications, and perform additional steps to ensure that write
ordering is persisted across multiple replicas.

When processing a PUT request, we consider it a non-interfering
write if its key is not found in the in-flight map. This is flagged in the
object header, and writing proceeds as described in § 3.2. During
recovery we search for secondary replicas of “lost” writes, and
“make up” location triples by using real non-primary-key locations
and an appropriately ordered but fake location on the failed primary.

If the object key is present in the in-flight map at write time,
ZStore must ensure that primary-key order is replicated across
devices before acknowledging the write. We flag this in the ob-
ject header, and after data is written and location information is
available, the location tuple is piggybacked on another write before
responding to the client. During recovery we ignore log entries
flagged as interfering, and instead recover the piggybacked location
tuples.

3.7 Discussion and Variations
Memory: The ZStore architecture described above relies on a full
in-memory map from key hash to location, requiring 64 B per key,
and is replicated across 3 gateways in a cell. For a mean object size
of 16 KB this would require 1 byte of DRAM for every 256 bytes of
flash; assuming a 40:1 DRAM:flash cost ratio, the index would add
an additional 16% to the cost of deployed storage. This is significant
but not impractical; for object sizes seen in the IBM traces (mean
write size 1.8MB) the index DRAM would cost less than 0.2% as
much as SSDs.

Alternately, memory consumption can be drastically reduced by
managing checkpoints as an LSM tree, with map entries retrieved
from flash storage as necessary and cached in memory. In the worst
case this would require an additional 1+𝜖 NVMe-oF reads per GET
request; analysis of the merged IBM traces (33K peak IOPS, 342M
objects) shows a hit rate of 82% for a 10M-entry cache consuming
roughly 1GB of memory. Assuming a 30× greater peak rate for a
3-gateway cluster, and a corresponding increase in cache size, the
cost of DRAM for this cache would be negligible.
Weaker consistency: ZStore can be modified to support read-
after-write consistency, rather than linearizability, by removing 𝜙1
notifications and the in-flight map, and ensuring 𝜙2 notifications
are received by other gateways before acknowledging a write. This

would cut notification overhead in half, eliminate the need for slow-
path handling of any GET requests, and simplify failure recovery as
all acknowledged writes are replicated across the memory of three
gateways.
Consistent hash: ZStore uses a table-based hash, similar to that of
Ceph [62] or Flat Datacenter Storage [53]: a hash of the key is used
to index a table of replica sets constructed to ensure redundancy
and uniform distribution across devices. Since data is not migrated
when the table changes, this need not be a true consistent hash [41],
and secondary replicas for a key may be changed between table
iterations; however changes to the primary replica for a key require
coordination (e.g., via ZooKeeper) to preserve write ordering.
S3 authentication: S3 requests include an authentication header,
which includes an access key, equivalent to an username, and a
signature of header fields and a secret key using HMAC-SHA1. The
number of bytes hashed is not large, consisting of the concatenation
of the URL and several HTTP header fields, and in typical appli-
cations the access/secret keys in active use may be readily held in
memory. The resulting overhead is minor, only modestly more than
that required to compute a SHA1 hash of the URL for indexing.
ZStore storage protocol: The ZStore storage protocol provides
two properties needed by the architecture: (a) append operations
with device-local sequencing, returning location data (i.e., LBA)
which may also be used to establish ordering, and (b) log acces-
sibility (including ordering and location) from other gateways. It
is currently implemented as a thin shim (an ordered list of zones)
on top of ZNS and NVMe-oF, but alternate implementations are
possible.

Ongoing work retains NVMe-oF, due to the wide availability
of highly-tuned and efficient implementations, but as we transi-
tion to SPDK’s ZNS emulation over conventional6 SSDs to address
availabiity issues, we are exploring non-standard modifications to
the emulation logic, such as very large, sparse zones to improve
garbage collection performance.

3.8 Scaling and Load Balancing
A ZStore cell cannot be scaled to large numbers of gateways, as
although the consistency communication within a cell may be
efficient, its asymptotic cost is𝑂 (𝑁 2). We scale instead by sharding
across ZStore cells, assigning a fraction of the bucket+key space to
each cell at the load balancer.

Simple sharding based on e.g., bucket name or key range would
lead to load imbalances across cells. To remedy this, physical SSDs
could be shared across most or all cells, by maintaining multiple
logs (one per cell) on each device. This in turn would incur multiple
(per-cell) failure recovery operations upon failure of a single device,
impacting scalability. Instead ZStore shards based on a strong hash—
the SHA1 used by the index—to distribute data equally across cells,
and associates each storage target with one and only one cell.

To allow dynamic expansion of a deployed system we use mul-
tiple ZStore gateway instances per physical gateway, migrating
instances to new hardware as it is deployed. Migration of an in-
stance is straightforward and does not involve transfer of state—the
instance de-registers from the load balancer and drops out of the

6If available, Flexible Data Placement [8, 33] devices could be used for this purpose, as
well.

7



cluster for a full epoch, then advertises itself (e.g., address, RDMA
targets) to its cluster neighbors from its new host, and finally sub-
scribes to its key range on the load balancer.

4 Implementation
The ZStore prototype is implemented in ≈7000 lines of C++ code,
using the Boost [12] async I/O framework and Beast [17] HTTP
library, and SPDK [7] for NVMe-oF initiator support, with TCP
sockets for gateway-to-gateway communication; we are examining
the Seastar async framework [57] and eRPC [40] for higher per-
formance, but will need to upgrade our networking hardware to
see performance improvements for all but the smallest object sizes.
The storage backend is comprised of native ZNS devices (West-
ern Digital DC ZN540), using SPDK target mode to expose them as
NVMe-oF targets. The prototype uses ZooKeeper [37] to coordinate
map persistence, garbage collection, and failure recovery.

ZStore constructs a continuous shared log on zoned storage
devices: writes are sent as zone append commands, which either
succeed, returning the LBA at which data was written, or return
a status indicating that the end of the zone has been reached. In
the latter case we send a finish-zone command to the device, which
seals the zone against further writes and releases any resources
held for writing that zone. An ordered free list of zones on a device
is maintained in ZooKeeper and known by all gateways, so each
can “wrap around” to the next zone without coordination. Finally,
the order in which zones are written must be known in order to
determine the relative log position of two objects or replicas, al-
though it is only necessary to keep enough information to order
LBAs used within the last 2 epochs.

The indexes (last 2 epochs, previous writes, and in-flight), 𝜙1
and 𝜙2 notifications are based on a standard 64-byte structure with
the following fields:

• SHA1 key hash
• ID of gateway performing this write
• per-gateway write sequence number
• epoch
• length in blocks
• (target ID, LBA) ×3 — location of replicas

The on-disk format includes a header with the information above,
as well as exact data length, full key name, object metadata such as
owner, permissions, and timestamps, as well as additional failure
recovery information such as the full replica set and the conflicted-
write flag and optional piggybacked location tuple described in
Section 3.6. For large objects the header indicates the tree height,
and the body holds a block extent list identifying either data blocks
or next-level descriptors.

Our prototype supports triple-replicated small and large ob-
jects, range requests, and ListObjectsV2, as well as full metadata
persistence, garbage collection, and failure recovery. It does not
yet support erasure coding, multipart upload, or S3 authentica-
tion, which are in progress but not completed. Due to limitations
in our experimental hardware we have not yet tested sharding
by key across multiple ZStore cells. Source code is available at
https://github.com/shuwens/zstore.

Table 1: Hardware specifications.

Hardware Spec Speed

CPU AMD Ryzen 9 9950X with 16 cores
AMD Ryzen 5 7600 with 6 cores

RAM 64GB
ZNS SSD Western Digital ZN540 4 TB 3.2R/2.0W GB/s

450R/180W k IOPS
NVMe SSD Sk Hynix P41 500GB 7.0R/6.5W GB/s

960R/1,000W k IOPS
Network ConnectX Pro 3 40Gbps

5 Evaluation
We next evaluate the ZStore prototype to answer the following
questions:
How fast is it?: What performance does it achieve on read
and write micro-benchmarks, with varying object sizes, in single-
gateway and multi-gateway configurations?
What is the overhead of linearizability?: We create artificial
workloads to trigger slow-path processing for contended keys, and
compare performance with and without the slow-path processing
needed for linearizability.
What is the overhead of background operations?: We mea-
sure benchmark slowdown during checkpoint persistence, failure
recovery, and garbage collection.
How does it perform compared to widely-used object stores?:
We compare small-object and large-object performance against
Ceph RADOS Gateway and MinIO.

5.1 Experimental setup
The hardware configuration for our experiments is shown in Table 1.
Three 16-core AMD Ryzen9 servers are used as ZStore gateways,
with 40Gbit/s Ethernet and RoCE v2 RDMA support. Three 6-core
Ryzen 5 workstations serve as targets, each equipped with two 4 TB
Western Digital ZN5407 SSDs, with SPDK target-mode emulation
used to expose them as multipath-capable NVMe-oF targets.

Another 6-core Ryzen 5 workstation is used for client emula-
tion. Requests are generated using S3Bench [52], a widely-used
benchmarking tool for object storage, and wrk [35], a configurable
general-purpose HTTP benchmarking tool.

5.2 Microbenchmarks
We run a series of tests using wrk as our workload generator, gener-
ating random GET requests across a pre-populated pool of objects,
and/or PUT requests to randomly-chosen names. The number of
outstanding requests generated by wrk is limited by the number of
open connections it creates, which serves a role similar to that of
queue depth in other storage benchmarks. Wrk was configured with
12 threads (2 per CPU core) and 120 connections, although smaller
connection counts were sufficient to achieve full throughput with
larger object sizes.

7Limited availability of these drives has hampered our experiments; we are currently
expanding our testbed by switching to SPDK ZNS emulation on conventional SSDs,
allowing us to substantially enlarge our experimental setup.

8

https://github.com/shuwens/zstore


4 8 16 32 64 128 256 512 1024
Object size (KB)

0

200

400

R
eq

ue
st

ra
te

[k
re

q/
s]

Read
Write

(a) Single-gateway read andwrite IOPS. 4KB read/write performance
is bottlenecked by the HTTP framework.Write shows lower throughput
due to triple replication.

4 8 16 32 64 128 256 512 1024
Object size (KB)

0

2

4

6

T
hr

ou
gh

pu
t[

G
B

/s
] Read Write 40Gbps

(b) Single-gateway read and write GB/s . ZStore quickly saturates
the network and the maximum throughput is bounded by the 40Gb/s
network. Write shows lower throughput due to triple replication.

Figure 5: Single-gateway microbenchmarks (4KB to 1MB). Results of object larger than 1MB is omitted.

Figure 5a shows the single-gateway performance for object sizes
ranging from 4KB to 1MB8. For 4 KB reads, the peak request rate
of 420 K requests/sec is quite close to the raw performance of the
HTTP framework, as measured with a custom application serving
a 4KB buffer of zeros in response to every GET request. We are
investigating further tuning of this framework, as well as an alter-
nate HTTP framework [57] which may be able to provide higher
performance.

At request sizes of 16 KB and larger, performance is limited by
the 40Gb/s network, as seen in Figure 5b. We omit results for our
experiments on a complete cell of 3 gateways, as network band-
width limits to the single client machine resulted in performance
very close to that of the single-gateway case, although in this case
saturating the network with 8 KB requests rather than 16KB.

Write request rate is CPU-limited: although the three replicated
writes are launched in parallel, resulting in write latencies (4 KB:
110 𝜇s) comparable to that of read operations (4 KB: 115𝜇s), the
CPU time spent on NVMe operations is tripled, yielding request
rates of 190k RPS for 4 KB writes, or roughly 1/3 those seen for
read operations. In the single-gateway configuration, throughput is
limited to 1/3 that of read operations, as well, as each replica must
be written through the same 40Gb/s network interface.

5.3 Linearizability overhead
To measure the cost of strong consistency, we compare baseline
ZStore, with full single-key linearizability, with the read-after-write-
consistent variant described in § 3.7, which does not detect read-
after-write conflicts and has no slow path for reads. We measure
“flat-out” performance on a real-world trace—IBM Trace 042, with
400K PUTs and 200K GETs over a range of object sizes—while
adding variable fractions of closely-spaced write/read operation
pairs, separated by 5 operations (in most cases 100𝜇s to 1ms), in
order to trigger detection of in-flight writes and resulting slow-path
read processing.

8Using ZStore large object support for objects of 128 KB and larger.

1% 10% 30% 50%
Immediate read ratio [%]

0

10

20
R

eq
ue

st
ra

te
[k

re
q/

s]

Read-after-write
Linearizability

Figure 6: Linearizability overhead, a comparison between read-
after-write and linearizability modes of ZStore. Real-world
trace is modified to include varying fraction of < 1ms read-after-
write. Extremely high rates of read-after-write impacts the lineariz-
ability performance modestly.

Results may be seen in Figure 6. Throughput is unaffected at
realistic fractions of short read-after-write intervals, i.e., several
percent or less. Extremely high rates of such requests result in a
relatively modest reduction (roughly 20%) in performance.

5.4 Overhead of background operations
ZStore achieves its efficiency in part by amortizing the cost of bulk
operations over many requests. To quantify this amortized over-
head, we measure performance degradation under high load from
checkpointing, recovery of a failed target, and garbage collection.

5.4.1 Checkpointing: Map size vs. Overhead Checkpointing writes
a series of replicated extents containing all index entries generated
during the last checkpoint period; the volume of data written is
thus determined by the request rate and checkpoint period. For a
worst-case figure we assume a request rate of 200K requests/sec,
corresponding to an average object size of 10s of KB; checkpointing

9



1M 2M 5M 10M

Map Entry Size

0

5.0

10.0

15.0

Th
ro

ug
hp

ut
O

ve
rh

ea
d

(%
)

4.6
5.3 5.6

7.8

2.4

4.7

11.1

13.3
Read
Write

Figure 7: Throughput decrease while checkpointing 1M-10M
index entries. Small checkpoints have <5% impact; worst-case
10M entries decrease writes by 13%.

every minute this would write 10M map entries. At a more real-
istic average object size (e.g., 1.8MB across the IBM Cloud Object
Storage traces [34]), and a checkpoint interval of 10 seconds, each
checkpoint would be 10× to 100× smaller.

To measure overhead we simulate persisting a map of 1M to
10M entries while running read and write benchmarks; results are
seen in Figure 7. Overhead is modest—persisting a 1M-entry map
results in less than a 5% decrease in performance in either case.
As map size increases the overhead becomes worse, reaching 13%
for write operations at 10M entries—a map size corresponding to
a worst-case PUT-only workload (200K req/s × 3 gateways) on
current hardware and a checkpoint interval of 16.7 seconds.

5.4.2 Failure recovery target and gateway recovery
Failure recovery is another source of overhead. We note that

the “blast radius” of failure recovery is relatively small in ZStore,
being limited to a single cell sharing a pool of devices; although
failure may be common in a very large deployment, a specific cell or
gatewaywill be affected by it only infrequently. To assess the impact
of target and failure failure recovery we measure the worst-case
impact on benchmark execution during recovery.
Target failure: To recover from target failure, ZStore identifies all
objects which lost a replica due to the failure; for each of these it
reads one of the remaining replicas and writes it to another device.
To test this we load our system with varying numbers of 4 KB
objects, then fail one of the 6 target devices and measure the impact
on read and write benchmarks during the recovery process.

In Figure 8a we see that read and write benchmarks are impacted
significantly, up to 20% and 35% respectively. We note that these
are worst-case measurements, as (a) they are measured on the
leader gateway, while disruption at non-leader gateways should be
much less, and (b) the interference is (mostly) proportional to the
number of NVMe reads and writes, not their total size, and will be
significantly less at more realistic mean object sizes.

Nevertheless we note that target failure recovery can result in sig-
nificant performance degradation; we are implementing a recovery
pacing mechanism in ZStore to bound this impact.
Gateway failure: Recovery from gateway failure requires “walking
the log” from the beginning of the previous checkpoint period,
reading all object headers written from the start of that period until

the present. As with checkpointing, the work required depends on
the number of write operations during the period.

In Figure 8b we see the performance impact of walking a log of
1M through 10M objects; as in the checkpointing case we expect
that object size and checkpoint frequency will result in scanning 1M
or fewer objects during this process. Read and write benchmarks
(againmeasured on the leader node) are impactedmodestly, slowing
from 5 to 15%. We note that this overhead is unlikely to be noticed,
as it represents 2% to 5% of aggregate cell performance, vs. the 33%
of performance lost when a gateway fails.

5.4.3 Garbage collection The ZStore prototype uses large-zone
ZNS drives, where each zone of roughly 1GB must be reset (i.e.,
erased) before being re-used. This necessitates a garbage collection
process, which identifies candidate zones with lower-than-average
fractions of live data, and then copies that remaining live data
somewhere else. In a long-running system the rate of garbage col-
lection is determined by the rate at which data is written, as the
cleaning process needs to produce clean zones quickly enough to
accommodate arriving data.

Rather than running the system until it reaches this steady state,
we simulate it by configuring storage with a “pre-aged” map con-
taining garbage, so that zones selected for cleaning contain 50%
live data in 4 KB objects. We adjust the cleaning algorithm to copy
data out of a zone in 2, 5, and 10 seconds, and again measure the
impact on read and write benchmarks on the GC leader; results
may be seen in Figure 9. The performance impact of a 10 second
GC interval is modest—10% write and 5% read—rising to 25% and
17% for a 2 second interval.

Finally, we note that the impact of garbage collection may be
significantly lower than this in environments similar to that of the
IBMCloud Object Storage traces, due to lack of garbage to collect. In
many of the traces the objects created were (almost) never deleted,
leading to an ever-expanding storage footprint. In this case there
is no space for garbage collection to reclaim, and the only way to
allow continued writing as the system fills up is to deploy additional
storage capacity.

5.5 ZStore vs Ceph and MinIO
The final part of our evaluation compares ZStore to Ceph RGW [61]
and MinIO [19], two widely-used open-source object stores. We
run these systems on the same cluster as ZStore, replacing the
ZNS SSDs used in the experiments above with the same number of
500GB SK Hynix P41 NVMe drives.

Figure 10a illustrates benchmark results for 4 KB objects on the
three systems, using the widely-used S3Bench [52] benchmark.
Results for Ceph and MinIO are roughly comparable, while ZStore
read performance is 2× higher, and write performance 3×. Yet this
does not tell the whole story, as S3Bench is optimized for high-
throughput large object accesses, achieving only 37K 4KB reads
per second with ZStore.

In Figure 10b we see more detailed results using the much higher-
performance wrk tester, plotting throughput in GB rather than
operations per second. ZStore saturates the 40Gbps network with
16KB requests, while neither Ceph nor MinIO reach equivalent
throughput until the object size increases to 1MB. This experiments

10



1M 2M 5M 10M

Map Entry Size

0

10

20

30

Th
ro

ug
hp

ut
O

ve
rh

ea
d

(%
)

2.8
5.6

13.3

18.717.1

22.8

27.5

34.4
Read
Write

(a) Performance impact during target failure recovery. Overhead
scales with objects recovered (1M-10M), reaching 35% for writes in
worst case.

1M 2M 5M 10M

Map Entry Size

0

5.0

10.0

15.0

Th
ro

ug
hp

ut
O

ve
rh

ea
d

(%
)

6.9 7.6 7.9

10.0

2.4

6.2

12.5

14.7
Read
Write

(b) Performance impact during gateway failure recovery. Log
scanning overhead remains modest (5-15%) even for 10M entries.

Figure 8: Failure recovery overhead of ZStore.

2 sec 5 sec 10 sec

GC Interval

0

5

10

15

20

25

Th
ro

ug
hp

ut
O

ve
rh

ea
d

(%
)

17.2

12.7

4.8

25.7 24.9

10.3

Read
Write

Figure 9: Garbage collection overhead with different aggres-
siveness (2-10 sec interval). Fast GC (2 sec) reduces throughput
by up to 25%; slow GC (10 sec) has <10% impact.

was performed with both read and write operations; results were
similar for both, and only one is shown in the graph for readability.
Discussion: We believe that much of the performance advantage
of ZStore over Ceph RGW is architectural, rather than an artifact
of implementation.

To create a small S3 object, RGWmust create at least two RADOS
objects9 on the backend — a small inode-like object (the head object)
and a data object. Chain replication within RADOS results in serial-
ization of the replica writes for each of the two objects; RGW then
serializes the creation of the two as part of its atomicity mechanism.
Additional writes are needed at each RADOS object replica in order
to persist block allocation metadata for the RADOS objects; we
have not determined whether these may be performed in parallel
with the data writes. While RGW must perform at minimum 12
writes, ZStore performs 3, for a 4× decrease in device IOPS load,
and serialization of these writes (vs. parallel writes in ZStore) yields
a 6−12× increase in latency. The messaging for these operations re-
sults in a much larger number of code paths across multiple nodes;

9These are replicated, mutable, named file-like objects used by all Ceph services
including CephFS and RGW [61].

even if Ceph were to use an equivalent or better framework than
ZStore, it would likely incur higher software overhead.

We note that both Ceph RGW and MinIO have been carefully
tuned for large-object performance, with throughput comparable
to that of ZStore. We have not performed a full analysis of MinIO
small-object performance, due to the complexities of its relationship
with the Linux file system, but expect similar I/O expansion and
serialization across layers.

5.6 Additional functionality
In addition to basic object functionality — PUT, GET,and DELETE
— ZStore implements the ListObjectsV2 [6] API, which returns an
ordered list of up to 1000 keys in a bucket, with starting point and
continuation mechanisms to allow its use in larger buckets. Appli-
cation expectations for performance of this API are low: published
reports indicate a listing rate of 13.5 K names/sec (13.5 requests/sec)
for AWS S3 using the official AWS API, and 93.8 K names/sec for a
highly-tuned client library.

The ZStore prototype can perform 2400 1000-key requests/sec,
listing 2.4M names/sec.We have not yet implemented ListObjectsv2
for the sharded multi-cell architecture; we expect a significant drop
in performance (perhaps as much as 2-3×) due to the need to merge
request streams from multiple cells, but expect performance to
remain well above application expectations.

6 Related Work
In this section we contrast ZStore with prior work which overlaps in
features (shared logs and shared register protocols) or in underlying
technologies (ZNS, RDMA, NVMe-oF).
Shared Logs: The CORFU replicated shared log [24] uses an “exter-
nal” sequencer to allocate increasing storage addresses in a shared
volume, and write-once storage semantics on each replica in order
to resolve conflicts. In contrast ZStore relies on storage devices to di-
rectly sequence individual append operations, using the ZNS Zone
Append operation in its current implementation. CORFU relies on
this shared sequencer for performance, falling back on a “thunder-
ing herd” approach when it fails, while ZStore’s expected-case logic

11



ZStore Ceph MinIO

Storage System

0

10k

20k

30k

40k

R
eq

ue
st

R
at

e
(r

eq
/s

) 37.3k

13.5k
16.7k15.8k

5.5k
3.6k

Read Write

(a) S3Bench with 4KB objects. ZStore achieves 37K/15K read/write
ops vs Ceph’s 13 K/5 K and MinIO’s 17 K/4 K on identical hardware

4KB 16KB 64KB 256KB 1MB 4MB
Object size

0.0

2.5

5.0

T
hr

ou
gh

pu
t[

G
B

/s
] Zstore GET

Ceph GET
MinIO GET
40 Gbps

(b) Read workload with varying object sizes. ZStore saturates 40
Gbps at 16 KB objects while Ceph and MinIO require 1 MB objects,
demonstrating ZStore’s small-object efficiency.

Figure 10: Performance of ZStore, Ceph, and MinIO.

requires no per-request coordination outside of individual devices.
Finally, while CORFU provides total ordering of all requests, this
guarantee is not required of object stores.

The authors of FuzzyLog [46] realized that achieving global
ordering is expensive, and proposed a system that allows for partial
ordering of writes using colors. LazyLog [48] further improves
performance by observing that writes are not immediately read
back, thus total ordering can be delayed until read time, and achieves
linearizability by deferring reads until all writes are persistent.
ZStore shares the similar key insight, but tracks ongoing writes via
its novel two-phase protocol, deferring reads only until the write
has finished, while in LazyLog reads are deferred until all writes
are persisted. The use of independent logs in ZStore is similar to
these approaches but ZStore’s goal is not implementing the log
abstraction but designing a near-zero-overhead key-value store
with strong per-key guarantees.
Shared register protocols: ZStore’s two phase notification sys-
tem for linearizability bears some resemblance to shared atomic
register protocols ([23, 27, 49]). Their quorum-based write has a
benefit over our two-phase write protocol in terms of fault toler-
ance10, but the shared registers require quorum-based reads with
an additional quorum rewrite if conflicts are encountered. These
quorum/multicast-based reads result in higher overhead even under
one-phase read scenarios than ZStore, which always reads from a
single node. Given the need for an HTTP gateway for S3 compat-
ibility, the communication latency for a shared register becomes
identical or larger (one extra RTT) than in ZStore.
Chain replication: This approach is used by a number of storage
and shared log systems, such as CORFU [24], CRAQ [60], Harmo-
nia [70], and Ceph [61]. Given the latency of SSD writes (many
10s of 𝜇s), serialization of device writes by chain replication incurs
significantly higher latency than the parallel append operations
performed by ZStore.
ZNS-related prior work: A large body of work focuses on adopt-
ing ZNS SSDs to improve performance of LSM tree-based stores
(e.g., RocksDB), typically on ZenFS [38, 43, 54]. WAZone [47] and
10Note that S3’s HTTP transport allows ZStore to request a client retry in these cases.

ZNSKV [64] both propose to use ZNS SSDs to further improve
the LSM-tree compaction workload, where SSD lifetime can be
extended, which improves throughput, space utilization, and write
amplification. However, most of the research along this line focuses
only on LSM-tree based storage systems, RocksDB to be more spe-
cific. These efforts adopt the new feature in ZNS SSD, and patch
existing mechanisms to improve different aspect of SSD devices,
such as performance, latency, or lifetime

The current implementation of ZStore uses Zone Append as a
sequencer for an unreplicated shared log, constructing a distributed
object store and managing conflicts between logs.
NVMe-over-Fabrics: Recent work such as Scalio [59] has explored
the use of NVMe-oF to build a key-value store with RDMA. Scalio
uses RDMA for their client interface, and to flatten data structures
into memory. ZStore’s phase 1 and phase 2 are messaging protocols,
using RDMA writes for optimization, and we implement a standard
HTTP/TCP S3 client interface.

7 Conclusion
This paper presents ZStore, a novel distributed object storage archi-
tecture that leverages a pool of unreplicated append-only shared
logs and works without any file system or layer between the stor-
age and the devices for reduced software overhead. We present
the principles behind the design of ZStore that optimizes writes
using the zone append command and ZNS SSDs, and introduce the
mechanism which addresses the challenge of forming a total order
from multiple, independent, partially ordered logs. We demonstrate
how ZStore can address conflicts and recover from failures at dif-
ferent levels. We show that ZStore has the potential to enable a fast,
efficient distributed object store.

8 Acknowledgments
We thank the anonymous reviewers of SoCC’25, SOSP’25, ATC’25,
and ApSys’24 for useful feedback. This research is supported in
part by the Mass Open Cloud (massopen.cloud) and its industrial
partners.

12

https://massopen.cloud/


References
[1] 2006. Amazon Simple Storage Service 2006-03-01. https://docs.aws.amazon.

com/aws-sdk-php/v3/api/api-s3-2006-03-01.html
[2] 2010. Amazon S3 – Object Size Limit Now 5 TB | AWS News Blog. https:

//aws.amazon.com/blogs/aws/amazon-s3-object-size-limit/ Section: Blog.
[3] 2012. De-indirection for Flash-based SSDs with Nameless Writes. In 10th USENIX

Conference on File and Storage Technologies (FAST 12). https://www.usenix.org/
conference/fast12/de-indirection-flash-based-ssds-nameless-writes

[4] 2020. Specifications - NVM Express. https://nvmexpress.org/specifications/
[5] 2023. Ceph.io — Ceph Reef Freeze Part 2: RGW Performance. https://ceph.io/

en/news/blog/2023/reef-freeze-rgw-performance/
[6] 2024. Amazon S3 - Cloud Object Storage - AWS. https://aws.amazon.com/s3/
[7] 2024. Intel Storage Performance Development Kit. https://spdk.io/
[8] 2024. NVMe FDP - A promising new SSD data placement approach.

https://semiconductor.samsung.com/news-events/tech-blog/nvme-fdp-a-
promising-new-ssd-data-placement-approach

[9] 2024. S3 API Reference - Amazon Simple Storage Service. https://docs.aws.
amazon.com/AmazonS3/latest/API/Type_API_Reference.html

[10] 2024. What is Amazon S3? - Amazon Simple Storage Service. https://docs.aws.
amazon.com/AmazonS3/latest/userguide/Welcome.html#ConsistencyModel

[11] 2025. Azure Blob Storage | Microsoft Azure. https://azure.microsoft.com/en-
us/products/storage/blobs

[12] 2025. Boost.Asio - 1.87.0. https://www.boost.org/doc/libs/1_87_0/doc/html/
boost_asio.html

[13] 2025. ConnectX-5 EN Card. https://network.nvidia.com/files/doc-2020/pb-
connectx-5-en-card.pdf

[14] 2025. DigitalOcean Spaces | S3-Compatible Object Storage. https://www.
digitalocean.com/products/spaces

[15] 2025. Google Cloud Storage. https://cloud.google.com/storage
[16] 2025. HPE J2000 Dual IOM 2x100GbE NVMe-oF SFF JBOF Storage |

SHI. https://www.shi.com/product/41942206/HPE-J2000-Dual-IOM-2x100GbE-
NVMe-oF-SFF-JBOF-Storage

[17] 2025. HTTP and WebSocket built on Boost.Asio in C++11. https://github.com/
boostorg/beast original-date: 2013-06-16T22:26:09Z.

[18] 2025. IBM Cloud Object Storage. https://www.ibm.com/products/cloud-object-
storage

[19] 2025. MinIO | S3 & Kubernetes Native Object Storage for AI. https://min.io/
[20] 2025. NVM ExpressTM over Fabrics. https://nvmexpress.org/wp-content/

uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
[21] 2025. NVMe Zoned Namespaces (ZNS) Devices | Zoned Storage. https://

zonedstorage.io/docs/introduction/zns
[22] 2025. Swift - OpenStack. https://wiki.openstack.org/wiki/Swift
[23] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing memory robustly

in message-passing systems. In J. ACM (1995-01-03), Vol. 42. 124–142. https:
//doi.org/10.1145/200836.200869

[24] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,
Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log Design for Flash
Clusters. In 9th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 12). 1–14. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/balakrishnan

[25] Matias Bjørling. 2020. Zone Append: A NewWay of Writing to Zoned Storage. In
(VAULT 20). https://www.usenix.org/conference/vault20/presentation/bjorling

[26] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 836–850. https://doi.org/10.
1145/3477132.3483540

[27] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying Consen-
sus and Shared Registers. In 17th USENIX Symposium onNetworked Systems Design
and Implementation (NSDI 20). 591–617. https://www.usenix.org/conference/
nsdi20/presentation/burke

[28] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Be-
dekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muham-
mad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,
Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011.
Windows Azure Storage: a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). Association for Computing Machinery, New York,
NY, USA, 143–157. https://doi.org/10.1145/2043556.2043571

[29] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A fast, Cost-Effective LSM-tree based KV store on hybrid storage. In 19th USENIX
conference on file and storage technologies (FAST 21) (2021-02). USENIX Associa-
tion, 17–32. https://www.usenix.org/conference/fast21/presentation/chen-hao

[30] Weijian Chen, Shuibing He, Haoyang Qu, Ruidong Zhang, Siling Yang, Ping
Chen, Yi Zheng, Baoxing Huai, and Gang Chen. 2025. IMPRESS: An Importance-
Informed Multi-Tier Prefix KV Storage System for Large Language Model In-
ference. In 23rd USENIX Conference on File and Storage Technologies (FAST 25).
187–201. https://www.usenix.org/conference/fast25/presentation/chen-weijian-
impress

[31] Siying Dong, AndrewKryczka, Yanqin Jin, andMichael Stumm. 2021. Evolution of
Development Priorities in Key-value Stores Serving Large-scale Applications: The
RocksDB Experience. In 19th USENIX Conference on File and Storage Technologies
(FAST 21). USENIX Association, 33–49. https://www.usenix.org/conference/
fast21/presentation/dong

[32] Zhuohui Duan, Hao Feng, Haikun Liu, Xiaofei Liao, Hai Jin, and Bangyu Li.
2025. AegonKV: A High Bandwidth, Low Tail Latency, and Low Storage Cost
KV-Separated LSM Store with SmartSSD-based GC Offloading. In 23rd USENIX
Conference on File and Storage Technologies (FAST 25). USENIX Association, Santa
Clara, CA, 321–335.

[33] N. V. M. Express. 2025. Overcoming the Write Amplification Problem with NVM
Express® Flexible Data Placement - NVM Express. https://nvmexpress.org/
nvmeflexible-data-placement-fdp-blog/

[34] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat. 2020. It’s
Time to Revisit LRU vs. FIFO. In 12th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 20).

[35] Will Glozer. 2025. wrk: Modern HTTP benchmarking tool. https://github.com/
wg/wrk original-date: 2012-03-20T11:12:28Z.

[36] Dr Werner Vogels https://www.allthingsdistributed.com. 2021. Diving Deep
on S3 Consistency. https://www.allthingsdistributed.com/2021/04/s3-strong-
consistency.html

[37] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: wait-free coordination for internet-scale systems. In Proceedings of
the 2010 USENIX conference on USENIX annual technical conference (USA, 2010-
06-23) (USENIX ATC’10). USENIX Association, 11.

[38] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. 2022. Accelerating RocksDB
for small-zone ZNS SSDs by parallel I/O mechanism. In Proceedings of the 23rd
International Middleware Conference Industrial Track (Middleware Industrial Track
’22). Association for Computing Machinery, New York, NY, USA, 15–21. https:
//doi.org/10.1145/3564695.3564774

[39] Yichen Jia, Eric Anger, and FengChen. 2019. WhenNVMe over FabricsMeets Arm:
Performance and Implications. In 2019 35th Symposium on Mass Storage Systems
and Technologies (MSST). 134–140. https://doi.org/10.1109/MSST.2019.000-9 ISSN:
2160-1968.

[40] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 1–16.
https://www.usenix.org/conference/nsdi19/presentation/kalia

[41] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing (STOC ’97).
Association for Computing Machinery, New York, NY, USA, 654–663. https:
//doi.org/10.1145/258533.258660

[42] Igjae Kim, J. Hyun Kim, Minu Chung, Hyungon Moon, and Sam H. Noh. 2022. A
Log-Structured Merge Tree-aware Message Authentication Scheme for Persistent
Key-Value Stores. In 20th USENIX Conference on File and Storage Technologies
(FAST 22). 363–380. https://www.usenix.org/conference/fast22/presentation/kim-
igjae

[43] Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim. 2022.
Compaction-aware zone allocation for LSM based key-value store on ZNS SSDs.
In Proceedings of the 14th ACMWorkshop on Hot Topics in Storage and File Systems
(HotStorage ’22). Association for Computing Machinery, New York, NY, USA,
93–99. https://doi.org/10.1145/3538643.3539743

[44] Asaf Levi, Philip Shilane, Sarai Sheinvald, and Gala Yadgar. 2024. Physical
vs. Logical Indexing with IDEA: Inverted Deduplication-Aware Index. In 22nd
USENIX Conference on File and Storage Technologies (FAST 24). 243–258. https:
//www.usenix.org/conference/fast24/presentation/levi

[45] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023. ROLEX:
A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Memory
Systems. In 21st USENIX Conference on File and Storage Technologies (FAST 23).
99–114. https://www.usenix.org/conference/fast23/presentation/li-pengfei

[46] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi,
James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. 2018. The FuzzyLog:
A Partially Ordered Shared Log. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18). 357–372. https://www.usenix.org/
conference/osdi18/presentation/lockerman

[47] Linbo Long, Shuiyong He, Jingcheng Shen, Renping Liu, Zhenhua Tan, Congming
Gao, Duo Liu, Kan Zhong, and Yi Jiang. 2024. WA-Zone: Wear-Aware Zone
Management Optimization for LSM-Tree on ZNS SSDs. In ACM Transactions
on Architecture and Code Optimization (2024-01-18), Vol. 21. 16:1–16:23. https:
//doi.org/10.1145/3637488

13

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html
https://aws.amazon.com/blogs/aws/amazon-s3-object-size-limit/
https://aws.amazon.com/blogs/aws/amazon-s3-object-size-limit/
https://www.usenix.org/conference/fast12/de-indirection-flash-based-ssds-nameless-writes
https://www.usenix.org/conference/fast12/de-indirection-flash-based-ssds-nameless-writes
https://nvmexpress.org/specifications/
https://ceph.io/en/news/blog/2023/reef-freeze-rgw-performance/
https://ceph.io/en/news/blog/2023/reef-freeze-rgw-performance/
https://aws.amazon.com/s3/
https://spdk.io/
https://semiconductor.samsung.com/news-events/tech-blog/nvme-fdp-a-promising-new-ssd-data-placement-approach
https://semiconductor.samsung.com/news-events/tech-blog/nvme-fdp-a-promising-new-ssd-data-placement-approach
https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html#ConsistencyModel
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html#ConsistencyModel
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://www.boost.org/doc/libs/1_87_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_87_0/doc/html/boost_asio.html
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://www.digitalocean.com/products/spaces
https://www.digitalocean.com/products/spaces
https://cloud.google.com/storage
https://www.shi.com/product/41942206/HPE-J2000-Dual-IOM-2x100GbE-NVMe-oF-SFF-JBOF-Storage
https://www.shi.com/product/41942206/HPE-J2000-Dual-IOM-2x100GbE-NVMe-oF-SFF-JBOF-Storage
https://github.com/boostorg/beast
https://github.com/boostorg/beast
https://www.ibm.com/products/cloud-object-storage
https://www.ibm.com/products/cloud-object-storage
https://min.io/
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1a-2021.07.12-Ratified.pdf
https://zonedstorage.io/docs/introduction/zns
https://zonedstorage.io/docs/introduction/zns
https://wiki.openstack.org/wiki/Swift
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/vault20/presentation/bjorling
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://www.usenix.org/conference/nsdi20/presentation/burke
https://www.usenix.org/conference/nsdi20/presentation/burke
https://doi.org/10.1145/2043556.2043571
https://www.usenix.org/conference/fast21/presentation/chen-hao
https://www.usenix.org/conference/fast25/presentation/chen-weijian-impress
https://www.usenix.org/conference/fast25/presentation/chen-weijian-impress
https://www.usenix.org/conference/fast21/presentation/dong
https://www.usenix.org/conference/fast21/presentation/dong
https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/
https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://doi.org/10.1145/3564695.3564774
https://doi.org/10.1145/3564695.3564774
https://doi.org/10.1109/MSST.2019.000-9
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://www.usenix.org/conference/fast22/presentation/kim-igjae
https://doi.org/10.1145/3538643.3539743
https://www.usenix.org/conference/fast24/presentation/levi
https://www.usenix.org/conference/fast24/presentation/levi
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/osdi18/presentation/lockerman
https://www.usenix.org/conference/osdi18/presentation/lockerman
https://doi.org/10.1145/3637488
https://doi.org/10.1145/3637488


[48] Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya
Ganesan. 2024. LazyLog: A New Shared Log Abstraction for Low-Latency Appli-
cations. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles (SOSP ’24). Association for Computing Machinery, New York, NY, USA,
296–312.

[49] N. A. Lynch and A. A. Shvartsman. 1997. Robust emulation of shared memory
using dynamic quorum-acknowledged broadcasts. In Proceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS ’97) (USA, 1997-06-
25) (FTCS ’97). IEEE Computer Society, 272.

[50] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. ROART: Range-query Optimized Persistent ART.
In 19th USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association, 1–16. https://www.usenix.org/conference/fast21/presentation/ma

[51] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: enabling multi-tenant storage
disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (SIGCOMM ’21). Association for Computing Machinery, New
York, NY, USA, 106–122. https://doi.org/10.1145/3452296.3472940

[52] Mark Nelson. 2024. Hotsauce S3 Benchmark. https://github.com/markhpc/
hsbench

[53] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell,
and Yutaka Suzue. 2012. Flat Datacenter Storage. 1–15.

[54] Myounghoon Oh, Seehwan Yoo, Jongmoo Choi, Jeongsu Park, and Chang-Eun
Choi. 2023. ZenFS+: Nurturing Performance and Isolation to ZenFS. IEEE
Access 11 (2023), 26344–26357. https://doi.org/10.1109/ACCESS.2023.3257354
Conference Name: IEEE Access.

[55] Seonggyun Oh, Jeeyun Kim, Soyoung Han, Jaeho Kim, Sungjin Lee, and Sam H.
Noh. 2024. MIDAS: Minimizing Write Amplification in Log-Structured Systems
through Adaptive Group Number and Size Configuration. In 22nd USENIX Con-
ference on File and Storage Technologies (FAST 24). USENIX Association, Santa
Clara, CA, 259–275.

[56] Sambhav Satija, Chenhao Ye, Ranjitha Kosgi, Aditya Jain, Romit Kankaria, Yi-
wei Chen, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Kiran
Srinivasan. 2025. Cloudscape: A Study of Storage Services in Modern Cloud
Architectures. In 23rd USENIX Conference on File and Storage Technologies (FAST
25). USENIX Association, Santa Clara, CA, 103–121. https://www.usenix.org/
conference/fast25/presentation/satija

[57] ScyllaDB. 2025. Seastar. https://seastar.io
[58] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su, Yangfan Zhou,

and Michael R. Lyu. 2023. FUSEE: A Fully Memory-Disaggregated Key-Value
Store. In 21st USENIX Conference on File and Storage Technologies (FAST 23). 81–98.
https://www.usenix.org/conference/fast23/presentation/shen

[59] Xun Sun, Mingxing Zhang, Yingdi Shan, Kang Chen, Jinlei Jiang, and Yongwei
Wu. 2025. Scalio: Scaling up DPU-based JBOF Key-value Store with NVMe-oF
Target Offload. In 19th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 25) (2025). 449–464. https://www.usenix.org/conference/
osdi25/presentation/sun

[60] Jeff Terrace and Michael J. Freedman. 2009. Object storage on CRAQ: high-
throughput chain replication for read-mostly workloads. In Proceedings of the 2009
conference on USENIX Annual technical conference (USA, 2009-06-14) (USENIX’09).
USENIX Association, 11.

[61] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File Sys-
tem. In 7th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 06). https://www.usenix.org/conference/osdi-06/ceph-scalable-high-
performance-distributed-file-system

[62] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. 2006. CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated Data. In SC ’06:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 31–31. https:
//doi.org/10.1109/SC.2006.19

[63] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. 2007.
RADOS: a scalable, reliable storage service for petabyte-scale storage clusters.
In Proceedings of the 2nd international workshop on Petascale data storage: held
in conjunction with Supercomputing ’07 (PDSW ’07). Association for Computing
Machinery, New York, NY, USA, 35–44. https://doi.org/10.1145/1374596.1374606

[64] Denghui Wu, Biyong Liu, Wei Zhao, and Wei Tong. 2022. ZNSKV: Reduc-
ing Data Migration in LSMT-Based KV Stores on ZNS SSDs. In 2022 IEEE
40th International Conference on Computer Design (ICCD). 411–414. https:
//doi.org/10.1109/ICCD56317.2022.00067 ISSN: 2576-6996.

[65] Yi Xu, Henry Zhu, Prashant Pandey, Alex Conway, Rob Johnson, Aishwarya
Ganesan, and Ramnatthan Alagappan. 2024. IONIA: High-Performance Replica-
tion for Modern Disk-based KV Stores. In 22nd USENIX Conference on File and
Storage Technologies (FAST 24). USENIX Association, Santa Clara, CA, 225–241.
https://www.usenix.org/conference/fast24/presentation/xu

[66] Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang. 2022. Practicably Boosting
the Processing Performance of BFS-like Algorithms on Semi-External Graph
System via I/O-Efficient Graph Ordering. In 20th USENIX Conference on File and
Storage Technologies (FAST 22). 381–396. https://www.usenix.org/conference/

fast22/presentation/yang
[67] Jinghuan Yu, Sam H. Noh, Young-ri Choi, and Chun Jason Xue. 2023. ADOC:

Automatically Harmonizing Dataflow Between Components in Log-Structured
Key-Value Stores for Improved Performance. In 21st USENIX Conference on File
and Storage Technologies (FAST 23). 65–80. https://www.usenix.org/conference/
fast23/presentation/yu

[68] Qiang Zhang, Yongkun Li, Patrick P. C. Lee, Yinlong Xu, and Si Wu. 2022. DE-
PART: Replica Decoupling for Distributed Key-Value Storage. In 20th USENIX
Conference on File and Storage Technologies (FAST 22). 397–412.

[69] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: Efficient
Range Query for LSM-trees. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). 51–64.

[70] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: near-linear scalability for replicated storage with in-
network conflict detection. In Proc. VLDB Endow. (2019-11-01), Vol. 13. 376–389.
https://doi.org/10.14778/3368289.3368301

[71] Zeying Zhu, Yibo Zhao, and Zaoxing Liu. 2024. In-Memory Key-Value Store
Live Migration with NetMigrate. In 22nd USENIX Conference on File and Storage
Technologies (FAST 24). 209–224. https://www.usenix.org/conference/fast24/
presentation/zhu

14

https://www.usenix.org/conference/fast21/presentation/ma
https://doi.org/10.1145/3452296.3472940
https://github.com/markhpc/hsbench
https://github.com/markhpc/hsbench
https://doi.org/10.1109/ACCESS.2023.3257354
https://www.usenix.org/conference/fast25/presentation/satija
https://www.usenix.org/conference/fast25/presentation/satija
https://seastar.io
https://www.usenix.org/conference/fast23/presentation/shen
https://www.usenix.org/conference/osdi25/presentation/sun
https://www.usenix.org/conference/osdi25/presentation/sun
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system
https://doi.org/10.1109/SC.2006.19
https://doi.org/10.1109/SC.2006.19
https://doi.org/10.1145/1374596.1374606
https://doi.org/10.1109/ICCD56317.2022.00067
https://doi.org/10.1109/ICCD56317.2022.00067
https://www.usenix.org/conference/fast24/presentation/xu
https://www.usenix.org/conference/fast22/presentation/yang
https://www.usenix.org/conference/fast22/presentation/yang
https://www.usenix.org/conference/fast23/presentation/yu
https://www.usenix.org/conference/fast23/presentation/yu
https://doi.org/10.14778/3368289.3368301
https://www.usenix.org/conference/fast24/presentation/zhu
https://www.usenix.org/conference/fast24/presentation/zhu

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 S3 Object Storage
	2.2 Workload Analysis
	2.3 NVMe-oF and ZNS

	3 Architecture and Design
	3.1 High-level Architecture
	3.2 Write and read handling
	3.3 List Objects handling
	3.4 Metadata persistence
	3.5 Garbage collection.
	3.6 Failure Recovery
	3.7 Discussion and Variations
	3.8 Scaling and Load Balancing

	4 Implementation
	5 Evaluation
	5.1 Experimental setup
	5.2 Microbenchmarks
	5.3 Linearizability overhead
	5.4 Overhead of background operations
	5.5 ZStore vs Ceph and MinIO
	5.6 Additional functionality

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

